The latest study, supported by the Royal Free Charity, began when one man aged 68 reported his symptoms improving. This prompted the research team to look through records of 1,663 patients diagnosed with ATTR-CM. Out of these patients, two more cases were identified.
The three men’s recoveries were confirmed via blood tests, several imaging techniques including echocardiography (a type of ultrasound), CMR scans and scintigraphy (a nuclear medicine bone scan), and, for one patient, an assessment of exercise capacity. CMR scans showed heart structure and function had returned to a near-normal state and amyloid had almost completely cleared.
An in-depth look at the records and assessments for the rest of the 1,663 cohort indicated that these three patients were the only ones whose condition had reversed.
One of the three men underwent a heart muscle biopsy that revealed an atypical inflammatory response surrounding the amyloid deposits (including white blood cells known as macrophages), suggesting an immune reaction. No such inflammatory response was detected in 286 biopsies from patients whose disease had followed a normal progression.
Investigating this further, the researchers found antibodies in the three patients that bound specifically to ATTR amyloid deposits in mouse and human tissue and to synthetic ATTR amyloid. No such antibodies were present in 350 other patients in the cohort with a typical clinical course.
If these antibodies could be harnessed, they could be combined with new therapies being trialled that suppress TTR protein production, enabling clinicians to clear away amyloid as well as preventing further amyloid deposition.
One such promising therapy is a single intravenous infusion of NTLA-2001, a novel gene-editing therapy based on CRISPR/Cas9. Early results of the trial, led by Professor Gillmore, indicate it may stop disease progression.*
The UCL Centre for Amyloidosis is one of the world’s leading centres for amyloid research. It includes the NHS National Amyloidosis Centre, the only centre in the UK specialising in amyloidosis.
* This is the first-ever human trial in which CRISPR/Cas9, a Nobel Prize-winning technology that makes a cut in the cells’ DNA and inserts a new genetic code, has been infused intravenously as a medicine to inactivate a target gene in a specific organ – in this case, the liver where TTR protein is made.fun-loving-friend-to-a-cancer-wed-never-heard-of-18635986/